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Abstract. We study numerically the dynamic and spectral properties of a one-dimensional
quasi-periodic system, where site energies are given byεk = V cos 2πf xk with xk denoting the
kth quasiperiodic lattice site. When 2πf is given by the reciprocal lattice vectorG(m, n) with
n andm being successive Fibonacci numbers, the variance of the wavepacket is found to grow
quadratically in time, regardless of the potential strengthV . For other values off , there exists a
critical value ofV beyond which the growth of the wavepacket variance is bounded. In particular
an anomalous diffusion takes place for 2πf corresponding toG(m, n) with generic integersm
and n. The level-spacing distribution is also examined, and the corresponding exponentβ is
observed to decrease withV .

1. Introduction

Incommensurate [1] and quasiperiodic [2] systems, which can be considered to be
intermediate between periodic and disordered systems, display interesting electronic
properties, and have attracted much attention during the past decades. Among the typical
incommensurate systems is the one-dimensional (1D) model described by the Harper
equation

9k+1+9k−1+ V cos(2πf k + θ)9k = E9k (1)

with an irrationalf , where9k represents the amplitude of the wavefunction at thekth site
and θ is an arbitrary phase. This equation describes the system of a Bloch electron on a
square lattice in a magnetic field [3], which can be mapped into the two-dimensional periodic
superconducting networks and arrays under transverse magnetic fields [3, 4]. Unlessf is
a Liouville number, the system is known to have a critical potential strengthVc = 2: for
the potential strengthV belowVc all the eigenstates are extended, displaying an absolutely
continuous energy spectrum, whereas forV > Vc there exist only localized states with a
pure-point spectrum. At the critical strengthVc all states are critical and the energy spectrum
is singular continuous. One of the interesting features in the system is that forV = Vc
the level-spacing distribution (LSD), which has been studied mainly in connection with
quantum chaos [5] and localization [6], follows an inverse-power law [7–9]

p(s) ∼ s−β (2)

with β = 3
2, indicating level clustering. On the other hand, the quasiperiodic system studied

the most is the 1D Fibonacci chain, where the on-site potential takes the two values+V and
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−V in a Fibonacci sequence. Regardless ofV , the system has been shown to be always
critical, which is manifested by the inverse-power-law behaviour of the integrated LSD
[8, 9]. Further, the LSD exponentβ has been found to vary from 2 to 1 asV is increased
from zero to infinity.

It is generally believed that the dynamics of these systems is closely related to their
spectral properties. The criticality of the 1D Fibonacci chain produces interesting dynamic
properties such as the anomalous diffusion of the wavepacket [8]: the varianceσ 2 of the
wavepacket increases algebraically

σ 2(t) ∼ t21 (3)

where the dynamical exponent1 is a decreasing function ofV . In contrast, in the Harper
system, the variance of the wavepacket grows linearly (1 = 1

2) only at V = Vc, which
separates the extended regime (V < Vc) with quadratic growth (1 = 1) from the localized
regime (V > Vc) with bounded spread of the wavepacket [7, 8]. An early conjecture that
the dynamical exponent1 is equal to the Hausdorff dimensionD0 of the spectrum, which
is given byβ − 1 with the LSD exponentβ, turned out to be incorrect [10]. Nevertheless
the intimate relationship between dynamics and spectral properties is reflected by the fact
that the information dimensionD1 of the spectrum provides a lower bound for1 [11].

In this work we study another interesting quasiperiodic system described by the equation
[3, 12]

9k+1+9k−1+ V cos(2πf xk + θ)9k = E9k (4)

which we call thegeneralized Harper equation(GHE). Here the position of thekth site
is given by xk ≡ k + [kτ ]τ , where τ ≡ (

√
5 − 1)/2 and [kτ ] denotes the integer part

of kτ . Note that for irrationalf this system isboth incommensurate and quasiperiodic,
since the incommensurate potential modulates the energies of the lattice sites which
have Fibonacci quasiperiodicity. In the study of quasiperiodic superconducting networks
[13] and arrays [14], which corresponds to equation (4) withV = 2, the transition
temperature has been revealed to vary with the magnetic field in a complicated and non-
monotonic manner. The perturbation theory for smallV [12] predicts that essentially all
states are critical when 2πf corresponds to a reciprocal lattice vectorG(m, n) of the
quasiperiodic lattice. In this quasiperiodic system, the reciprocal lattice vector is given
by G(m, n) ≡ 2π(m+ nτ)/(1+ τ 2) with m andn being integers. Particularly in case that
n andm are two successive Fibonacci numbers, the system approaches a commensurate
one, as the two numbers grow large, and exhibits only extended-like critical states. On
the other hand, for other (generic) values off it was found that there is a novel transition
between critical and localized states: forV < Vc critical and localized states coexist, while
all states are localized forV > Vc, where the value ofVc in general depends onf . Such a
peculiar transition associated with the eigenstate properties raises a question as to the nature
of the transition in dynamics and diffusive properties, which are intimately connected to
the characteristics of the level statistics. It is thus of interest to investigate the diffusion
properties and the level statistics of the system, with emphasis on the connection between
them.

2. Generalized Harper equation

2.1. Spread of the initially localized wavepacket

We first study numerically the time evolution of the wavepacket in the system described by
the GHE (4). The initial wavepacket is chosen to be localized at the centre of the system
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and its time evolution is described by the time-dependent Schrödinger equation

9k+1+9k−1+ V cos(2πf xk + θ)9k = i
∂9k

∂t
. (5)

To calculate the variance of the wavepacket defined by

σ 2 ≡
∑
k

(xk − x̄)2|9k|2 (6)

with the mean position̄x ≡∑k xk|9k|2, we integrate directly the Schrödinger equation (5) in
the chain of lengthN with the free boundary conditions90 = 9N+1 = 0. The fourth-order
Runge–Kutta method is used in the numerical integration, with the time step1t = 0.05.
We have confirmed that the calculation with1t = 0.01 yields the same results and, for
simplicity, considered only the caseθ = 0. In most of the numerical results of this paper
we employ a system of sizeL = 10 946. However, a system of sizeL = 28 657 has also
been considered and found to display essentially the same results, so the main conclusions
are believed to be correct at least qualitatively for larger systems.

Figure 1 displays the variance of the wavepacket as a function of time for several
potential strengthsV in the case of 2πf = 0.7, which does not correspond to a reciprocal
lattice vector of the system. At the beginning of the time evolution, the variances for all
values ofV follow a single curve and become separated from one another at timet ≈ 1.
In particular, for smallV , the wavepacket shows almost-ballistic motion until the variance
saturates due to the finiteness of the system. The spread of the wavepacket is suppressed as
V is increased, and the variance is apparently bounded forV exceedingVc ≈ 1.7, at least
up to timet = 50 000.

Figure 1. The log–log plot of the wavepacket varianceσ 2 as a function of timet for several
values of the potential strengthV in the case 2πf = 0.7. The initial wavepacket is chosen to
be localized at the 5473rd site in the chain of lengthN = 10 946.
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Figure 2. The minimum of the inverse localization length,αmin, for all eigenstates in the chain
of lengthN = 10 946 as a function of the potential strengthV for 2πf = 0.7. The full curve
is a guide to the eye; the dotted line denotesαmin = 0.

The above dynamic behaviour can be easily understood in view of the eigenstate
properties. In the GHE with 2πf 6= G(m, n), it is known that there exists the critical
potential strengthVc, below which localized and critical states are coexistent [12]: it is this
existence of critical states forV < Vc which leads to the unbounded diffusion. As the
potential strengthV gets larger, the percentage of the critical states decreases relative to
the localized states, resulting in the reduction of the diffusion rate. WhenV reachesVc, no
critical states exist in the system and the wavepacket can no longer diffuse unboundedly.

To confirm this, we also calculate the inverse localization length

α ≡ 1

N

N−1∑
k=1

ln

∣∣∣∣9k+1

9k

∣∣∣∣ (7)

for each eigenstate, in the chain of lengthN = 10 946. The minimum valueαmin of the
inverse localization length over all eigenstates is plotted in figure 2 as a function of the
potential strengthV . This curve clearly shows that for the system sizeN = 10 946 the
critical potential strengthVc, above which critical states do not exist, is indeed consistent
with the value at which the diffusion begins to be bounded.

Note here that the apparent value ofVc is significantly larger than that obtained in
the equilibrium study [12], which is 1.361± 0.001 for 2πf = 0.7. This discrepancy
presumably does not reflect the difference between statics and dynamics of the system, but
can be attributed to the finite-size effects: the previous reported value 1.361 in statics was
obtained in the thermodynamic limit, whereas the larger value in dynamics has been obtained
in the system of finite sizeN = 10 946. We thus consider systems of various sizes, and the
minimum values of the inverse localization length as functions of the potential strength. The
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Figure 3. The critical potential strength, where all eigenstates become localized, as a function of
the inverse system size 1/N (N = 6765, 10 946, 17 711, 28 657, 46 368, 75 025, 121 393). The
full curve is a guide to the eye, and the typical error is less than the symbol size.

resulting values of the critical potential strengthVc, which can be identified with the zero of
αmin, for various system sizes are displayed in figure 3, which demonstrates the reduction
of the critical strength with the system sizeN . In particular, rather a sharp decrease ofVc
can be observed for largeN , manifesting the approach ofVc toward the equilibrium value
(1.361) in the limitN →∞.

When 2πf corresponds to a reciprocal lattice vectorG(m, n), the system is more or
less close to the commensurate system, resulting in the ubiquity of critical states. Such
dependence of the eigenstate properties on the value of 2πf naturally leads us to expect
rather different dynamic behaviour for 2πf given by a reciprocal lattice vector. In particular,
when 2πf = G(m, n) with n andm being successive Fibonacci numbers, the potential
becomes almost constant at (quasiperiodic) lattice sites and accordingly, extended-like states
are expected. Indeed, figure 4 shows that the variance of the wavepacket for(n,m) = (8, 13)
grows quadratically in time, regardless of the potential strength. The quadratic growth of the
variance signifies ballistic motion of the wavepacket, which is characteristic of the extended
states. Of course, truly extended states are not allowed in the quasiperiodic system and it
is concluded that there exist extended-like critical states in the case 2πf = G(m, n) with
successive Fibonacci numbersn andm, which is in agreement with the previous equilibrium
results [12].

In the case 2πf = G(m, n) with n andm not being successive Fibonacci numbers
exhibits more interesting features. In figure 5, we plot the variance of the wavepacket as
a function of time for several potential strengths in the system with 2πf = G(1, 3). As
in other cases, the variance shows an unbounded quadratic growth for smallV while it
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Figure 4. The log–log plot of the wavepacket varianceσ 2 as a function of timet for several
potential strengthsV = 0.5, 1.0, 1.5, and 2.0 in the case 2πf = G(13, 8). For those values
considered here, all data curves are shown to collapse into a single curve which is proportional
to t2; this corresponds to the ballistic motion. The initial wavepacket is chosen to be localized
at the 5473rd site in the chain of lengthN = 10 946.

is bounded forV larger than the critical strengthVc. It is of particular interest that the
variance of the wavepacket displays the power-law increase, with the dynamical exponent
1 defined in equation (3) decreasing continuously from 1 to 0 asV is increased towardVc.
It is well known that such anomalous diffusion of the wavepacket also takes place in the
1D Fibonacci chain and persists for largeV [8]. In the GHE, in contrast, it occurs only
for V smaller than the critical strengthVc since critical states no longer exist aboveVc.
These phenomena reflect the quasiperiodicity and incommensurability of the potential: the
quasiperiodicity results in anomalous diffusion whereas the existence of a critical potential
strength has its origin in incommensurability.

2.2. Level statistics

We next examine the level statistics of the GHE to obtain its spectral properties. The
allowed energy structure of the GHE is very complicated as shown in figure 6. The
absolutely continuous energy band forV = 0 is subdivided into many subbands with
increasingV . As in the Harper equation, energy levels in each subband arrange in clusters
at a certain potential strength and a further increase of the potential strength yields the
pure-point spectrum indicative of the localized regime. In the GHE, however, the clustering
potential strength varies with each subband in contrast to the Harper equation, and tends to
be larger in the inner subband. (The single isolated level, which appears at very lowV , is
presumably an artifact due to the free boundary conditions [9].) In order to investigate the
spectral property in a quantitative manner, we consider the level statistics in this system. As
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Figure 5. The log–log plot of the wavepacket varianceσ 2 as a function of timet for several
potential strengthsV in the case 2πf = G(1, 3). The initial wavepacket is chosen to be localized
at the 5473rd site in the chain of lengthN = 10 946.

shown in figure 6, all energies are bounded, and we can count the number of energy-level
spacings larger than a given values. The integrated level-spacing distribution (ILSD) is
then obtained

pint(s) ≡
∫ ∞
s

p(s ′) ds ′ (8)

wherep(s) is the probability density of level spacings.
Figure 7 shows the ILSD for several potential strengths in the system with 2πf =

G(1, 3). Each distribution consists of two parts: the exponentially decaying part for small
s and the power-law decaying part for larges. It is known that localized states in general
exhibit the LSD of Poisson type, which has been proved in the Anderson model [15] and
also observed numerically in the Harper equation [9]. It is thus reasonable to attribute the
exponentially decaying part to the contribution of the localized states. On the other hand,
the power-law decaying part is associated with the critical states, as is known in the case
of the Harper equation. This interpretation is strongly supported by the fact that the portion
of the exponentially decaying part grows larger asV is increased.

Here it is of interest to note that the exponentβ of the power-law decaying part is
dependent on the potential strengthV . We estimate the exponentβ by fitting the power-
law decaying part of the ILSD to the forms1−β , and show in figure 8(a) that β decreases
continuously from 2 with increasingV . Although we are unable to estimateβ numerically
for V > 1.5 where very few critical states exist,β is expected to approach unity asV is
increased towardVc. Similar dependence ofβ onV also appears in the 1D Fibonacci chain
[9] except for the fact that a finiteVc does not exist.



1360 Gun Sang Jeon et al

Figure 6. Allowed energies as a function of the potential strengthV in the chain of length
N = 377 for 2πf = G(1, 3).

It is known that between the LSD exponentβ and the dynamical exponent1 the simple
relation

1 = β − 1 (9)

holds approximately in the Harper equation withf = τ as well as in the 1D Fibonacci
chain [7, 8]. We thus estimate the value of1 from the time evolution of the wavepacket
spread and plot the ratio of 21 to β − 1 in figure 8(b), which shows that equation (9)
is satisfied only for smallV . As V is increased, the relation between1 andβ begins to
deviate from equation (9), presumably due to the coexistence of the localized states with
the critical ones. For largerV there appear more localized states in the system, and the
deviation grows larger. Consequently, it is concluded that the generalized Harper system is
another example which suggests no simple relation between the spectral dimension and the
dynamical exponent [10].

2.3. Autocorrelation function

Finally we consider the autocorrelation function, which is another useful quantity in the
study of quantum chaos. In the Harper system the autocorrelation functionC(t) was shown
to display a power-law decay with logarithmic correction [16]:

C(t) ∼ f (log t)t−δ (10)

at the critical point, whereδ ≈ 0.13 andf (x) is a periodic function. In the extended regime
the autocorrelation functionC(t) behaves as

C(t) ≈ (c0+ c1 log t)t−1 (11)
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Figure 7. Integrated level-spacing distributionpint(s) for several potential strengths in the chain
of lengthN = 10 946 with 2πf = G(1, 3). These distributions are normalized in such a way
that the mean spacing is equal to unity. For a clear comparison, the curves forV = 1.0, 1.5,
and 2.0 are shifted by 10, 102, and 103, respectively, along the horizontal axis.

with c0 ≈ 0.30 andc1 ≈ 1.65, which reflects the ballistic motion of the electron. In the
localized regime the autocorrelation functionC(t) decays to a finite value, as expected. In
the 1D Fibonacci chain, in contrast, the exponentδ of the autocorrelation functionC(t),
which takes the extended-state value (δ = 1) for V = 0, decreases continuously withV ,
approaching zero in the limitV →∞ [16].

In the GHE the autocorrelation functionC(t) of the diffusing wavepacket, shown in
figure 9, manifests the interplay between the localized and the critical states. The time
evolution of the autocorrelation can be explained in terms of the superposition of the two
contributions: the power-law decaying term from the critical-state components and the non-
decaying term from the localized-state components. Figure 9 shows that the saturation value
grows withV , indicating the increase of the localized-state components. On the other hand,
for 2πf = G(13, 8) the autocorrelation function exhibits almost the same behaviour as the
extended case in the Harper equation, which is consistent with the behaviour in figure 4.

3. Summary

We have investigated numerically dynamic and spectral properties of the 1D quasiperiodic
system described by the generalized Harper equation. For 2πf = G(m, n) with n andm
being successive Fibonacci numbers, the wavepacket has been found to show ballistic motion
regardless of the potential strengthV . For other values of 2πf , there exists a finite potential
strengthVc above which the growth of the wavepacket variance is bounded. The critical
strength appears naturally to be the same as the transition potential strength beyond which
all states are localized, as found in the equilibrium study. Further, anomalous diffusion has
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Figure 8. (a) The exponentβ of the power-law decaying part of the ILSD, as a function of
the potential strength. (b) The ratio of 21 to β − 1 as a function of the potential strength. The
estimated error bars correspond to three standard deviations.
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Figure 9. The autocorrelation functionC(t) as a function of time for several potential strengths in
the chain of lengthN = 10 946 with 2πf = G(1, 3). For comparison,C(t) for 2πf = G(13, 8)
is also plotted as a broken curve.

been observed below the finite critical potential strength for 2πf = G(m, n) wheren andm
are not successive Fibonacci numbers. In this case the ILSD has been shown to consist of
two parts: the exponentially decaying part for small spacings arising from the contribution
of localized states and the power-law decaying part for large spacings from the contribution
of critical states. Here the exponentβ of the level-spacing distribution has been found to
decrease withV , similarly to the 1D Fibonacci chain model. We have also considered the
autocorrelation function, which is again indicative of the interplay between the localized
and the critical states. It may be possible to fabricate the superlattices of electronic systems
with appropriate structures, which are described by the generalized Harper model for generic
V ; experiments performed on such systems are expected to display a variety of interesting
phenomena.
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